What Are Your Data Telling You?

A Budget and Schedule Streamlining Review & Summary of Anaerobic Reductive Dechlorination of Chlorinated Hydrocarbons

Several previous articles discuss simplifying and streamlining environmental data acquisition and evaluation.

Mindful consideration of the information covered in the aforementioned articles can increase project margins and provide tools for avoiding some common pitfalls, such as:

  • Misinterpretation of nondetect data as an indication that a site is not contaminated when samples have been diluted such that quantitation limits (QLs) are too high to support the conclusion. This can occur because
    • Matrices are not amenable to the analyses.
    • Contamination concentrations require large dilutions.
    • Analysts are reluctant to analyze samples at lesser dilutions due to not understanding project purposes, inexperience, to avoid instrument maintenance, or to protect expensive and delicate instrumentation.
  • Failure to plan for an approach to achieve site closure when it is not possible to achieve detection limits (DLs) less than regulatory levels
    • Because regulatory levels are usually established using toxicological studies, not instrumental analyses, current methodologies may not be able to achieve these values.
    • Identifying the approach for addressing this issue during the project planning phase, and securing client and regulatory approval of the approach when the plan is finalized, is more efficient than securing approval after samples have been analyzed.
    • Additionally, planning for this issue allows for identification of more sensitive methodologies if they exist and performance of a cost/benefit analysis for the use of such methods with cooperation of clients and regulators.
    • Equally as important, it provides a tool to avoid misinterpretation of such data as an indication that the site is contaminated.
  • Attempting to remediate to levels less than native background.
    • Sometimes Federal regulatory levels are less than native levels (ex: arsenic in the West) and it is crucial to perform site assessments against background data (or perform background studies) in such cases.
  • Long-term monitoring of common contaminants that have been misidentified as contaminants of concern (COC). In such cases, assessment of historical data is necessary and several sampling rounds may be required to identify and gain approval for eliminating these parameters.

These pitfalls are easily avoided with proper assessment of site data and data requirements. However, site data can provide far more information. This may require analysis of parameters that are not COCs so careful planning is important, because analysis for parameters that do not provide relevant information wastes time and money and does not support the protection of human health and the environment.

Natural attenuation is one example of a remediation process where analysis for non-COCs can provide valuable information. Natural attenuation occurs when naturally occurring processes reduce contamination in soil and groundwater. These processes occur in situ and include dilution, dispersion, volatilization and other natural processes. Monitored natural attenuation (MNA) is an approved remedy at some sites and involves collection of data to assess and document the efficacy of the attenuation process.

When MNA is in place, non-COC data can be used to confirm that conditions are amenable to attenuation and the presence of breakdown products. Aerobic or anaerobic conditions (or one and then the other), specific pH values, and the presence of specific metals and/or microbes may be needed. Natural attenuation may be enhanced through forcing a site to anaerobic conditions, introducing bacteria and/or feeding native bacteria, and/or temporarily altering the pH. In each case, data must be collected to determine if the desired conditions have been achieved, and subsequent data must be collected to determine if attenuation was enhanced.

Contaminants that may undergo natural attenuation include chlorinated solvents, certain metals, radionuclides, and oil & gas-related aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylenes (BTEX). For this article, the MNA process to be further considered is anaerobic reductive dechlorination (ARD) of chlorinated hydrocarbons, specifically ARD of the volatile organic compounds (VOCs) tetrachloroethene (PERC or PCE) and trichloroethene (TCE).

The primary or initial contaminant for this process may be either PCE or TCE. These contaminants are present in the environment due to past use as degreasers, dry-cleaning agents, and through use in manufacturing processes. The ARD process breaks down PCE to TCE, and TCE subsequently breaks down to cis-1,2,-dichloroethene (DCE) and trans-1,2-DCE. 1,1-DCE may also be produced. The DCE isomers break down to vinyl chloride, and vinyl chloride breaks down to ethene. If all PCE and/or TCE breaks down to ethene, remediation is complete, because ethene is not an environmental risk.

To assess if ARD is occurring, break down products are included in the analytical data set. If TCE (and/or PCE) concentrations are decreasing and vinyl chloride concentrations are increasing, the process is successfully progressing. Regulatory criteria for vinyl chloride are stringent and the concentrations and may exceed the action limit; however, additional actions are not needed to address the exceedances unless the process stalls at this stage or  if vinyl chloride is also present because manufacturing at the site included polyvinyl chloride (PVC) production. .

Because MNA can be unacceptably time-consuming, often taking many decades to progress, various enhancement processes, as previously noted, have been implemented. The ARD process may be bio-attenuated with the microorganisms Dehalococcoides (abbreviated as DHC or DHE), which can be naturally occurring or inoculated into a site. Even when naturally occurring, the native population may not be great enough to speed ARD to the desired extent. In such cases, the microorganisms may be fed with vegetable oil or molasses. The table below shows some of the analyses that may be used at an ARD site.

ARD Table

Additional information about ARD and various analytical parameters can be found at the EPA Clu-In website, here. The information at the link provides more detailed and extensive information as well as links to additional resources. However, in the experience of the authors, if results show that ARD is occurring, assessing other parameters at the frequency indicated at the Clu-In link is not necessary. Some of the tabulated analyses listed are high-cost specialty analyses that may not add value for your specific project. If you are unsure of the frequency and type of analyses needed at your site, we invite you to contact Oak Services, LLC for a consultation.

 References & Resources

2007, Agency for Toxic Substances & Disease Registry (ATSDR), https://www.atsdr.cdc.gov/csem/csem.asp?csem=15&po=5, November.

2014, ATSD, https://www.atsdr.cdc.gov/phs/phs.asp?id=263&tid=48, October.

1999, United States Environmental Protection Agency (USEPA) https://www.epa.gov/sites/production/files/2014-02/documents/d9200.4-17.pdf, April.

2012, USEPA, https://clu-in.org/techfocus/default.focus/sec/bioremediation/cat/Anaerobic_Bioremediation_(Direct), -.

2001, Unites States Geological Survey (USGS), Natural Attenuation Strategy for Groundwater Cleanup Focuses on Demonstrating Cause and Effect, January.

Moral Agency & Purpose-Driven Business

The 22nd Conference of the Parties (COP 22) and the twelfth meeting of the Parties to the Kyoto Protocol (CMP 12) recently concluded in Marrakech, Morocco. More information can be found at the COP 22 website, here.

As we discussed in our article on COP21, COP 21, Sustainable Development Goals & A Step towards Global Thinking, scientists estimate that a global temperature increase of greater than 2º C (3.6 º F) above pre-industrial levels would be catastrophic; however, if temperatures continue to increase at the current rate, an increase of approximately 5ºC (9 º F) is likely within the next two to three decades (Earth Science Data, 2014). At the United Nations Sustainable Development Summit on September 25, 2015, world leaders adopted the 2030 Agenda for Sustainable Development. This agenda included the Sustainable Development Goals (SDGs), 17 measurable goals that range from ending world poverty to achieving gender equality and empowering women and girls by 2030. SDG 13, Climate Action, calls for urgent action to combat climate change and its impacts. Our article discussing COP21 provides a summary of the SDGs. Details about individual SDGs can be found here: http://www.undp.org/content/undp/en/home/mdgoverview/post-2015-development-agenda.html.

The United Nations development Programme (UNDP) has provided support to governments working to achieve the SDGs in efforts to balance what it identifies as the three pillars of sustainable growth: social progress, economic growth, and environmental protection. However, businesses have a large part to play in how well the SDGs are achieved regardless of regulatory framework, government support, or directives. Technologies exist to support companies’ efforts to measure progress towards meeting the SDGs, and these technologies are available to most businesses whether they are based in countries that require such efforts or not.  With the unanticipated paradigm shift that may be happening in the governments of some Western nations, it may soon fall to business to provide the voice of environmental leadership and innovation in the West. This will include integrating the SDGs into the structure of company vision and operation. While these changes will no doubt prove challenging, they may also offer a new opportunity for the business sector to cast a wider net as innovative, integrated and purpose-driven.

Every business model tells a story. A good business model will tell a story that supports a long-range vision and goals for long-term success. Because long-range goals must value employees, clients, and consumers, sound business models cannot be built solely on the motivation for profit. Instead, there must be room for innovative thinking, technical advances, and ethical practice. Practicing business ethically should not be dependent upon regulatory restrictions, but rather be built upon support for approaches that are inclusive of caring about humans and the human condition, with an ability to embrace social and cultural development. All business requires support from humans, as workers, clients, and consumers. And humans are moral beings, with moral agency and responsibility. As such, purpose-driven firms have a mandate to support sustainable development, especially in the midst of moral ambiguity and contradiction. Sustainable development includes socially responsible practices and actions, and environmentally responsible actions are socially responsible actions.

Climate change is the most important environmental issue facing our species, and we must turn our attention to mitigating its effects. Relentless pursuit of profit for its own sake without attention to these issues, in the end, results in no profit, because there will soon be nothing left to profit from.

The strength of the correlation between human activity and climate change is clearly illustrated here: http://www.bloomberg.com/graphics/2015-whats-warming-the-world. The data used for these graphs is from NASA’s Goddard Institute for Space Studies. The lack of a control planet against which to assess the data denies us of the final definitive data set; however, we simply do not have a control planet, and so no reasonable arguments can be made to continue down a path that appears to lead toward planet-wide catastrophe. We must become better stewards of our Earth, and we must incorporate actions to those ends into standard business practice. It’s important to remember that we have nowhere else to go.

 References & Resources

Bloomberg the Company, 2015. What’s Really Warming the World? June.

Earth System Science Data, 2014. Global Carbon Budget 2014, Abstract here: http://www.earth-syst-sci-data-discuss.net/7/521/2014/essdd-7-521-2014.html

Harvard Business Review, 2002. Why Business Models Matter. May.

The National Aeronautics and Space Administration: http://www.nasa.gov

United Nations Conference on Climate Change (COP21/CMP11) website: http://www.cop21.gouv.fr/en/

United Nations Conference on Climate Change (COP22/CMP12) website: http://www.cop22-morocco.com/

United Nations Development Programme Website: http://www.undp.org/content/undp/en/home/presscenter/pressreleases/2015/09/24/undp-welcomes-adoption-of-sustainable-development-goals-by-world-leaders.html

 

Environmental Analyses and Your Project Budget, Part Two

As we discussed in Part One of this two-part series of articles, managing the budget is an important aspect of any project, and with Performance Based Contracts (PBCs), it is critical. In Part One, we discussed streamlining analytical parameters and what to consider when determining when and how to do so. In a previous article, we discussed what your laboratory needs to know to provide you with the most accurate pricing for your project. In this article, we focus on questions about how your analyses will be used and how the answers can further help manage your budget and schedule.

What decisions hinge upon your analytical results? Will you have dig-sites that must be left open as you await the results? Will discharge operations stall while you wait?

In any project where stand-by time is accrued prior to receipt of analytical results, compare stand-by costs to mark-ups for expedited turn-around-times (TATs) for analytical results. Ideally, this comparison is performed while generating your estimate; however, it can also occur during project planning. In almost all cases, the costs for stand-by labor-hours exceed the mark-ups for expedited TATs for results, even at 100% and 200% mark-ups for the expedited TATs. It’s important to confirm that your laboratory can meet your TAT needs and identify any methodological limitations to meeting those TATs (some methods can be performed within 24 hours while some cannot). Sometimes, clients will permit action with preliminary or partial results after an initial wave of full results if results can reasonably be anticipated to be similar for each event. Our article on establishing a relationship with your laboratory  and Part One of this article provide some guidance for communicating with laboratories and clients.

Does your laboratory offer sample pick-up? Can you deliver samples? Does the laboratory offer on-site packing services?

If you subcontract with a laboratory that offers pick-up at your location, compare costs of this service to costs of shipping. Alternately, a local laboratory may make it possible for your field personnel to drop off samples at the end of the day, which can also save shipping costs. Some laboratories also offer sample packing at field sites. It may be worth considering the costs of this service vs. the possibility of burn-out for field staff if you have limited personnel who will otherwise be packing samples after a long day in the field. The potential for mistakes in sample labelling, packing, and Chain-of-Custody procedures increases at the end of a long work day, and such errors can lead to the need to reanalyze or even re-collect samples, thus increasing costs. Personnel turn-over resulting from burn-out can also be costly. While these concerns do not apply to every project, it is worth a forthright, proactive assessment of whether it applies to yours to mitigate the need to solve problems that could have been prevented.

What level of data validation is needed? Is it imperative to wait for final validation or can actions move forward based on preliminary results?

Depending upon the nature and sensitivity of your project, your client may permit action based on preliminary data verification prior to validation, may approved limited validation, or may – if your laboratory and data validation group remain consistent – approve actions based on preliminary data and data verification following one or more rounds of full validation.

It is important to consult with your client and ensure all actions are ethical and support achievement of project objectives prior to taking these actions. In our article about data validation, we discuss how environmental data validation can mitigate risk, including budgetary risk, for projects. We also provide insight on when it is appropriate to perform reduced validation and when validation may not be required at all. Once you have ensured you are performing the proper level of validation, streamlining your analytical parameters as discussed in Part One will result in streamlined validation, further supporting budget and schedule management.

Actions that reduce stand-by time or streamline work by limiting the focus to relevant details will have a positive impact on schedule and budget. Assessing project types for determining when it is ethical and technically sound to approach your client with these questions is beyond the scope of this article. If you are unsure about this for your own work, we invite you to contact us to determine if contracting Oak Services, LLC for a brief consultation regarding these concerns or for other types of Chemistry Program support is right for you.

 

Environmental Analyses and Your Project Budget, Part One

Managing the budget is an important aspect of any project, and with Performance Based Contracts (PBCs), it is critical. PBCs offer greater opportunities for technical innovation and efficiency but can also pose financial risks. In a previous article, we discussed what your laboratory needs to know to provide you with the most accurate pricing for your project. In this article, we focus briefly on questions you should be asking of your team and actions you can take to help manage your budget, streamline your work, and increase client confidence.

At what stage in the Superfund process is your project? Have Contaminants of Potential Concern (COPCs) or Contaminants of Concern (COCs) been identified? Once a Record of Decision (ROD) has been issued, site characterization has been performed, and your contaminants have been determined.

Ideally, you identified your intention to evaluate only COCs during the proposal stage of your project. Your contract award and approval of your project plans subsequently indicate client and possibly regulatory approval of this approach. Alternately, client approval can be confirmed during scoping sessions.

If analyses for parameters other than COCs are planned on a new or on-going project, why?

It is prudent to discuss changing to COC-only analysis and reporting with clients and regulators, but push-back on ROD-compliant actions is rare. Unless there is a compelling reason to perform or continue performing analyses for non-COCs, there is no ethical or legal reason to do so.

Clients are usually receptive to simplifying approaches. If you are managing an on-going project or taking over an existing project, an historical data review may be prudent. Common laboratory contaminants sometimes show up as COCs. Contaminants that have been remediated may be listed. A thorough review of historical data can identify such parameters and determine if removal from the COC-list is appropriate. This requires formal approval from the client and regulators, but it is not usually an onerous task when taken on by personnel with experience evaluating and interpreting analytical data. It is even possible that parameters that are naturally occurring but exceed Federal action levels are listed (example: arsenic in the Western United States). In such cases, identifying background studies for your client or proposing to your client that one be designed and executed is prudent.

If you are conducting site characterization, your work is key to identifying appropriate COCs. Is site history known? Are you narrowing your focus on contaminants that are reasonably expected to be present or are you taking a “let’s do everything” approach? If the latter, is there a compelling reason to do so? Are there data gaps or suspected historical activities? If not, why do what is not needed? Do background studies exist for the site or region? Should you propose one?

Meetings with clients and regulators may be needed to streamline your analytical parameters, and formal approval may be needed, but these discussions show that you are attending to the details of the project rather than going through the motions. Asking your laboratory to reduce your analyte list only to those parameters that are meaningful to your project is a scientifically sound, ethical way to reduce not only analytical costs, but also reduce internal costs by streamlining data review, interpretation, and reporting.

Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP) – A Consultant’s Overview

In 2005, the Director of the Federal Facilities Restoration and Reuse Office of the United States Environmental Protection Agency (EPA) issued a memo stating:

“The Uniform Federal Policy for Quality Assurance Project Plans (UFP-QAPP) has been approved by the Office of Solid Waste and Emergency Response (OSWER) and the Department of Defense (DoD) for use at federal facility hazardous waste sites. The purpose of this Memorandum  is to inform you that Quality Assurance  Project Plans prepared and approved according  to the UFP-QAPP meet all the requirements of EPA Requirements for Quality Assurance Project Plans, (QA/R-5) issued by the Quality Staff of the Office of Environmental  Information.

…the UFP-QAPP elected to take on topics that had not been addressed  in the past, beginning with the adequacy of sampling plan design, through field sampling activities, to data review, with an emphasis  on the quality of data, related to the decision that requires environmental data.” The EPA memo in its entirety can be read here. http://www2.epa.gov/sites/production/files/documents/oswer_9272.0_20.pdf

In April 2006, the Office of the Under Secretary of Defense released a memorandum stating:

“In March 2005, Thomas Dunne, Acting Administrator for the U.S. EPA Office of Solid Waste and Emergency Response (OSWER) joined me in signing the Uniform Federal Policy for Quality Assurance Project Plans(UFP-QAPP),  thereby formally adopting the policy for use at Federal facility hazardous waste sites. Recently, EPA issued a directive and guidance for EPA Regions to require use of the UFP-QAPP for collection of data at Federal facility hazardous waste sites involving CERCLA, RCRA, and Brownfields type projects. The purpose of this memorandum is to request that Components begin immediate implementation of the policy.” The full DoD memo can be read here: http://www.denix.osd.mil/edqw/upload/ADUSD_MEMO.PDF

UFP-QAPP stands for Uniform Federal Policy – Quality Assurance Project Plan. It is the result of extensive collaborations between the EPA, the DoD, and the Department of Energy (DOE). The original 37 work-sheet version of the UFP-QAPP was released by the EPA in 2005. By 2009, most DoD components had adopted the UFP-QAPP for environmental work. Although the DOE was instrumental in developing the UFP-QAPP, it has not to-date formally adopted the policy; however, its use may be required on DOE projects under specific programs.

The updated, optimized 28 worksheet version released by the EPA in 2012 combines several worksheets to reduce redundancy. The prompts were also updated to be more helpful and relevant to industry than those found in the original version. The optimized format with prompts can be found here: http://www2.epa.gov/sites/production/files/documents/ufp_qapp_worksheets.pdf

The UFP-QAPP is much more than a traditional Quality Assurance Project Plan (QAPP) and if the current optimized template is followed with care, all aspects of project planning except Health & Safety will be considered. The document was intended to be a Sampling and Analysis Plan (SAP) inclusive of a Field Sampling Plan (FSP) and QAPP. It was also intended to be a collaborative document written by project managers, hydrogeologists, chemists, and engineers working together, although it is wise to have a lead author to ensure a coherent and cohesive whole, as is the case with any other project document. In its current form, the UFP-QAPP has the potential to fulfill all Work Plan (WP) requirements except Health & Safety.

Although some Worksheets focus on laboratory actions, data validation, and chemical quality control (QC), this is a small part of the UFP-QAPP. The text below provides a summary of Worksheets for which information must be provided by Project Management and/or technical leads:

QAPP Worksheet #1 and 2: Title and Approval Page

This page requires identification of the contract number, the lead organization’s Project and Quality Managers, the relevant regulatory agencies and other stakeholders, as well as a list of previous reports related to the project. Once the document is complete and finalized, this worksheet is where client and contractor Project and Quality Managers sign off to indicate approval of the final plan.

QAPP Worksheet #3 and 5: Project Organization and QAPP Distribution

This page may simply be an organizational chart. It requires inclusion of specific individuals within the lead agency as well as contractor and subcontractor personnel.

QAPP Worksheet #4, 7 and 8: Personnel Qualifications and Sign-Off Sheet

Names, project roles, education, and certifications are to be listed here. Once the UFP-QAPP is complete, primary personnel should also sign here to indicate that they agree to follow the plan.

QAPP Worksheet #6: Communication Pathways

The prompt for the optimized version of this worksheet states: “This worksheet should be used to document specific issues (communication drivers) that will trigger the need to communicate with other project personnel or stakeholders. Its purpose is to ensure there are procedures in place for providing the appropriate notifications and generating the appropriate documentation when handling important communications, including those involving regulatory interfaces, unexpected events, emergencies, non-conformances, and stop-work orders.” As a general rule, this is a good place to document who is responsible for day-to-day communications as well and with whom and how (email, phone, in person) those communications are to occur.

QAPP Worksheet #9: Project Planning Session Summary

Project kick-off meetings and any other scoping sessions should be documented in Worksheet #9. Ideally, the technical lead(s) and/or contractor Project Manager ensures all of the necessary information is recorded and supplied to the lead author. Although the EPA does not recommend simply taking Worksheet #9 to the scoping sessions, it can be useful as a guidance for what information is needed. In the context of the UFP-QAPP, “scoping session” means any meeting during which the project scope is discussed and alignment is ensured even if there are no modifications to the formal Scope of Work.

The EPA offers workshops for UFP-QAPP preparation and numerous on-line documents to assist in preparation of a UFP-QAPP. One of these is the Participant’s Guide for How to Plan Projects Using the Uniform Federal Policy for Quality Assurance Project Plans, Training Workshop which can be accessed here: http://www2.epa.gov/sites/production/files/documents/participant_guide_ufp_qapp_workshop_v_01.pdf

This document provides examples for planning for projects using the UFP-QAPP including preparing for and conducting scoping meetings (as defined by the UFP-QAPP) with your client.

QAPP Worksheet #10: Conceptual Site Model

The title of this Worksheet is self-explanatory. This is where you develop and/or present your Conceptual Site Model (CSM). The optimized UFP-QAPP template provides prompts for discussing site history; sources of known or suspected hazardous waste; known or suspected contaminants or classes of contaminants; primary release mechanism(s); secondary contaminant migration; fate and transport; potential receptors and exposure pathways; land use considerations; key physical aspects of the site (site geology, hydrology, topography, climate) as pertinent to the project; the current interpretation of the nature and extent of contamination; and any data gaps and uncertainties associated with the CSM. Depending on the nature of your project, the input of your hydrogeologist, geochemist, chemist and/or engineer can be useful for completing this worksheet.

QAPP Worksheet #11: Project/Data Quality Objectives

This worksheet walks the author through a systematic planning process (SPP). The template specifically walks through the EPA’s 7-step Data Quality Objective (DQO) process. For Step 4, it’s important to define temporal (schedule) as well as spatial boundaries. For spatial boundaries, for example, it’s simple to say your team will dig and haul until PALs are met. However, this is risky without indicating at what depth you’ll make another call, or determining what you’ll do if you hit bedrock or groundwater.

Make sure to include reasonable “if/then” statements in Step 5 as well.

If you are unfamiliar with the EPA’s 7-step DQO process, you can find an introduction to this SPP here: http://www2.epa.gov/quality/training-courses-quality-assurance-and-quality-control-activities#intro_dqos

QAPP Worksheet #14/16: Project Tasks & Schedule

The title of this worksheet is self-explanatory. This is where your schedule or task list should be developed or added to the plan.

QAPP Worksheet #17: Sampling Design and Rationale

This is a good place for figures showing proposed and/or known sampling locations. The prompts provide some guidance on developing a sampling plan, and your technical leads in all fields could have valuable insight to be included here.

Other Worksheets

Other worksheets in the plan may appear to be similar to a traditional QAPP and may seem “chemistry focused” from a non-chemist point of view; however, dismissing these worksheets as “fill in the blank” sections is a mistake that can impact your budget, plan, and schedule.

You need to determine or identify what regulatory or project-specific PALs you will use in Worksheet #15, and you will need to address what your decision process and criteria will be if current methodology is unable to achieve these PALs. Levels of validation and QC sample requirements will also need to be identified. The input of an experienced environmental chemist is advised. Copying and pasting from old plans without careful consideration of actual project objectives could lead to unnecessary expenditure of budget and schedule, as you will be bound to following the plan. It’s important not to treat the details as administrative.

The topics addressed in the UFP-QAPP worksheets can help you and your team plan for efficient, effective project execution and assist you in meeting regulatory requirements for project planning. The EPA Frequently Asked Question (FAQ) page provides a tidy overview for understanding the UFP-QAPP: http://www2.epa.gov/sites/production/files/2014-02/documents/ufp_qapp_faq.pdf

It is important to understand the expectations and requirements of your client. While these requirements may seem to be clearly spelled out in your Request for Proposal (RFP), communication is vital. You don’t want to expend budget and schedule on multiple planning documents if your client would be satisfied with a UFP-QAPP and Health & Safety Plan (HASP).

If a UFP-QAPP is required but your team prefers other documentation in the field, it may be time to adjust to a new approach, and this can often be achieved by engaging the team in preparation of the UFP-QAPP for your DoD project. Once the team is comfortable that the contents of the UFP-QAPP are usable and meet their needs, they can identify the individual worksheets needed for their specific tasks and refer to those worksheets alone, as needed.

Some DoD clients require preparation of a UFP-QAPP for any type of environmental sampling, including sampling conducted only in conjunction with demolition for the purpose of confirming demolition has not caused new contamination. However, if there is an installation-wide QAPP in place for your project, or there is an approved and applicable QAPP in place for an on-going project undergoing re-assignment, the UFP-QAPP requirement may be waived or reduced. Even so, you may want to consider preparing a new UFP-QAPP to confirm that your understanding of the project is in alignment with current client expectations. Legacy documents do not always capture changes that can occur over time on long-term monitoring or maintenance projects. Any request to reduce or eliminate a UFP-QAPP requirement should be in the client’s best-interest.

In the author’s experience, use of the UFP-QAPP as an over-arching WP is client–dependent, and sometimes district-dependent. Some DoD clients want a complete UFP-QAPP, plus an FSP and a separate WP, and possibly a variety of additional plans. Some clients prefer only a UFP-QAPP and a HASP. The Naval Facilities Engineering Command (NAVFAC) may expect you to use a NAVFAC specific version called the UFP-SAP. The UFP-SAP is based on the original UFP-QAPP with minor modifications. Regardless of what your client needs or requires, the prompts in the optimized UFP-QAPP template provide useful guidance for planning.

One concern that has been expressed is that failure to address details is generally not acceptable in a UFP-QAPP. However, most clients are aware that project execution can be unpredictable. It is possible to write the UFP-QAPP so that there is room to make real-time field decisions or use alternate approaches. In fact, the UFP-QAPP can better prepare your team to make these decisions. It is also not necessary to repeat relevant information provided elsewhere in the UFP-QAPP.

Example:

“Samples will be collected from the approximate former location of the pipeline. Samples will also be collected from the approximate bottom of the disposal pit and/or immediately downgradient of the pit, depending upon site conditions. Approximate locations and depths of the pipeline and pit were identified through use of the historical documents provided in Appendix A. GPS will be used to record exact sampling locations in the field. See Worksheet 18.

If necessary, additional delineation sampling will be performed as step-outs and/or step-downs until analytical results are below the project action levels (PALs) shown on Worksheet 15-1 or no impact to groundwater is identified using downgradient groundwater data with results less than the PALs shown in Worksheet 15-2. See Worksheet 11 for details on boundaries to project decisions and specific if/then questions. See Worksheet 20 for anticipated sample quantities and associated QC.”

Although not intended to be all-encompassing, the above example shows how your team might meet UFP-QAPP requirements, prepare for real-time field decisions, and ensure your engineers, hydrogeologists, chemists, and project manager(s) are aligned.

Clients are seeking a clear, well thought-out plan for project execution, and preparing the UFP-QAPP can help ensure this expectation is met. Initially, the document may seem onerous, but its guidance provides for a thoughtful approach to planning that can better prepare your team for efficient, effective project execution. Careful planning and team alignment saves time and reduces difficulties during project execution. And because efficient, effective project execution is the best path to ethical, profitable project completion, a UFP-QAPP can be an invaluable project planning tool.

If you have questions or comments, please leave them in the comments section below. If you’d like to find out if Oak Services is the right company to prepare or review your UFP-QAPP or other planning documents, please contact us and let us know what you’re looking for.

References

2013, DoD, DoD Quality System Manual Version 5.0, July.

2006, DoD, Memorandum for Deputy Assistant Secretary of the Army (environmental, Safety, and Occupation Health), Deputy Assistant of the Navy (Environment), Deputy Assistant of the Air Force (Environment Safety and Occupational Health), Director Defense Logistics Agency (DSS-E), April.

2014, EPA, Frequently Asked Questions: Uniform Federal Policy for Quality Assurance Project Plans, February.

2012, EPA, Intergovernmental Data Quality Task Force Uniform Federal Policy for Quality Assurance Project Plans, Optimized UFP-QAPP Worksheets, March.

2011,EPA, Participant’s Guide for How to Plan Projects Using the Uniform Federal Policy for Quality Assurance Project Plans (UFP QAPP), Training Workshop Guide, October.

2005, EPA, Memorandum, OSWER GUIDANCE 9272.0-20, Applicability of the Uniform Federal Policy for Quality Assurance Project Plans (EPA 505-04-900A), December.

2005, EPA, Office of Solid Waste and Emergency Response, OWSER Directive 9272.0-17 Implementation of the Uniform Federal Policy for Quality Assurance Project Plans (UFP-QAPP) and Federal Facility Hazardous Waste Sites, June.

2005, EPA, Intergovernmental Data Quality Task Force Uniform Federal Policy for Quality Assurance Project Plans, Evaluating, Assessing, and Documenting Environmental Data Collection and Use Programs, March.

 

Laboratory Procurement, Data Quality, & Budget Management

Communication during the bidding stage and planning stage of your project is the first step in ensuring your data are of the appropriate type and quality. Clear communication at these stages provides your laboratory with information necessary for quoting accurate costs, enabling you to estimate your budget more accurately. Moreover, communication of project requirements at these stages allows your selected laboratory to become your partner in meeting your project Data Quality Objectives (DQOs). This entry discusses the type of information that must be communicated to achieve these goals.

What laboratory certifications are needed for your project? Do you need State certifications? How about Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP) certification (not to be confused with State of California ELAP)? Perhaps you only need (or also need) a lab with National Environmental Laboratory Accreditation Program (NELAP) certification? This information may be provided in your Statement of Work (SOW), Performance Work Statement (PWS) or Request for Proposal (RFP). However, if not provided, your client will expect you to determine what certifications are needed and ensure they are in place.

Once you have determined what certifications are needed, it’s important to ask your prospective laboratory to provide copies of the certifications with their quotation. If the certifications are due to expire soon, confirm the laboratory is taking the necessary steps for renewal.

It is wise to write the requirement into both your request for quotation (RFQ) and your contract that the necessary certifications be maintained and/or renewed and copies provided to you for the life of your project. Putting a contract in place with your laboratory helps ensure that the laboratory will prioritize your work and codifies both party’s expectations and requirements. It allows you to establish and enforce penalties and fee reductions for failure to perform or late delivery of data. Should such issues arise, a purchase order (PO) will not serve you well.

What else do you need to determine? What else does the laboratory need to know?

Methods and Parameters, as well as Compound Lists

Compound lists for methods are not the same for laboratories across the industry. For example, a laboratory will provide you with a lengthy compound list for SW-846 Method 8270D for Semivolatile Organic Compounds (SVOCs), but the list will not be the same for all laboratories. The laboratory target compound list (TCL) may not match the list for your project (which may also be called the “TCL”). The lab’s TCL may not match the United States Environmental Protection Agency (EPA) TCL. Therefore, if you have specific target analytes to be addressed by your project, it is imperative to identify these for the laboratory.

Turn Around Times (TATs)

Are you performing remediation? Do you need expedited TATs for another reason? The quickest results will be available as preliminary data only; however, if you have taken care in selecting your laboratory, this shouldn’t be too scary.

You will need to budget for the laboratory’s mark-up for providing results to you at an expedited pace. Usually, the laboratory mark-ups, even at 100% or more, are considerably less than project $ spent on extended stand-by time.

The laboratory must agree to the expedited TATs up-front (during the bidding stage) and in advance of receiving the samples. Once your project is in full swing, you’ll be placing your bottle order (request for coolers and containers) at least a week in advance. The laboratory may be operating at close to capacity, so this is a good time to remind them of the expedited TATs required on the samples they’ll be receiving. If your project schedule has shifted, you will need to re-confirm that they can meet your TAT expectations.

Data Deliverable Expectations

You can usually save money by not using hard copy data packages. Many laboratories have portals you can use to download your data. If not, the data packages can be burned to CDs and shipped to you.

If your project requires data validation, it may be wise to request full Level IV packages (data summaries and raw data), so that any data quality concerns can be investigated immediately by your validators, without incurring a schedule delay waiting for the laboratory to deliver the additional data.

Additionally, your chemists and database managers may need to weigh in on the electronic data deliverable (EDD) requirements. What is needed for your validators and systems may not be the same format required by your client (be sure you have your location data and field data available too!)

Most labs include at least one EDD format in their costs; however, you may need to make budgetary adjustments if the laboratory will be required to produce two or more EDDs. It’s therefore wise for you and the laboratory to be aware of such needs during the bidding and planning stage.

Project Action Limits/Criteria

Whether your project action limits (PALs) are identified by your client or your team identifies the regulatory criteria for your PALs during project planning, there is a possibility that some values will be lower than your laboratory can achieve. You will need to know if there are alternate methods that can achieve quantitation limits (QLs) below these PALs and if your laboratory can perform them.

If your client has not identified methods for you and modifications to standard methodologies are commonly available that can achieve QLs less than your PALs, your client may expect you to identify and budget for the modified methods. This can easily be addressed during the laboratory bidding stage through direct communication with your prospective laboratories.

Alternately, some of your target compounds may have PALs too low for current methodology to achieve. This is because regulatory criteria are often based on toxicological studies run on biota, not on what current methodologies and instruments can “see”.

If your PALs are too low for current methodologies to achieve, you will need a plan to address this. You will not want to destroy a solid working relationship with your highly qualified laboratory by demanding they do the impossible, and you will not want to spend your schedule and budget chasing the wind. Communication of the proper requirements and the right time is the key to your success.

———————————————————————-

Although this article is written with environmental projects and analyses in mind, with appropriate adjustments, this approach can apply to various industries. If you have questions or comments, leave them in the comments section below. If you’d like to talk to Oak Services about writing your laboratory RFQ, procuring qualified laboratories, managing laboratories, and/or writing or reviewing your project plans, please, contact us and let us know what you’re looking for.

About the author: Dianne McNeill is a Proposal Manager and Senior Scientist with Oak Services. She presented the paper “Laboratory Data Quality and the Bottom Line” (McNeill & Thielke) at the 2007 EPA Annual Conference on Managing Environmental Quality Systems. Abstracts are available for free download here.

 

 

Environmental Data Validation – What It Is and Why We Do It

Costs of inaccurate or inadequate data can be steep. Problems with data quality can result in tangible and intangible damage ranging from loss of customer/user confidence to loss of life and mission. – Department of Defense (DoD) Guidelines on Data Quality Management

…..more than a decade’s experience has demonstrated that integrity is not a safe assumption. United States Environmental Protection Agency (EPA), 2002 Guidance on Environmental Data Verification and Data Validation

Data validation is absolutely essential at key decision points, such as determining the boundaries of groundwater contamination. – EPA, Region 9

We must ensure project objectives are met through adequate, accurate data. We must also take steps to ensure project decisions are based upon legally defensible data.

In the terminology of the United States Environmental Protection Agency (EPA) and the Department of Defense (DoD), measurement performance criteria (MPC*) or data quality indicators (DQIs) are the criteria for evaluation of project data. Your MPC support your data quality objectives (DQOs), which are objectives your data must satisfy to be “good enough” to support your project decisions. This means MPC support your DQOs, which in turn support the project objectives. However, your MPC do not have to be perfectly met for your DQOs to be achieved.

How do you determine your MPC and DQOs? Your MPC and DQOs are set during project planning. The optimized Uniform Federal Policy – Quality Assurance Project Plan (UFP-QAPP) lays out steps and some guidelines to assist you in determining what they should be. The prompts in the optimized UFP-QAPP format can be useful for project planning, even if this challenging document is not required for your project, and you don’t go on to use the template. Referencing the prompts can help you meet EPA criteria for project plans and determine when to engage your engineers, geologists, and chemists during planning. Though this may seem time-consuming, this approach to planning will save you valuable project execution time once your project is in progress.

Your chemists can help develop and/or identify your MPC. It may be appropriate to default to the current DoD Quality Systems Manual (QSM) criteria, method criteria, or historical laboratory criteria. Because your planning time is not unlimited and because you cannot predict every field and laboratory condition that may affect your data, using established criteria as your MPC is usually a good approach. Your MPC are intended to be a guide for evaluating how well you met your DQOs and not meeting MPC is an indication that a closer review of the data may be needed, but MPC are not a prescriptive measure of your DQOs.**

So, how do you know if your MPC have been met well enough for you to make sound project decisions? How do you know your project decisions are based upon legally defensible data? Data validation is how you do that.

During project execution, your validators evaluate your data to determine if any of your data are not usable for project purposes. Ideally, this evaluation is not simply an “in is in, out is out” approach to evaluating quality control (QC) outliers, but rather takes your overall project goal into account. With use of Automated Data Review (ADR) and similar tools, 60-80% of what a validator does can be automated. However, not all of the required assessments can be automated, and experience and the ability to look at the big picture have value in minimizing risks.

Although laboratories perform several levels of data review, it is illegal for them to “validate” their own data in most cases; this is considered a conflict of interest. Under deadline and holding-time pressure, mistakes can occur.

Scenario 1:

Validation is required by your client for your project which involves a simple dig and haul remediation of lead in soil with no migration to groundwater. Easy, right? You get your preliminary results which are all nondetects, place your clean fill, and move on. Your final data arrives a few weeks later and your validators determine the calibration for lead was improperly performed or calculated by the laboratory and your nondetect values for lead reported at a 2 milligram per kilogram (mg/kg) quantitation limit (QL) should have been reported at 20 mg/kg.

If an “in is in, out is out, get it done as quickly as possible” approach is used, this could lead the validators to reject these nondetect values, and you may have to remobilize, re-excavate, and collect and analyze additional samples from your site. Your project has just cost twice as much as anticipated.

However, if your validators have access to your project goals and are taking a “whole project” approach, they will have access to your project action limits (PALs) or decision criteria, which is likely to be between 100 mg/kg and 400 mg/kg for lead, in which case, nondetect values with QLs raised to 20 mg/kg are clearly usable to determining you have met your criteria.

If any of your project documents, inclusive of your Request for Proposal (RFP), Statement of Objectives (SOO), Statement of Work (SOW), or Performance Work Statement (PWS) require data review per the DoD QSM, the UFP-QAPP, or reference ADR, your client is requiring data validation. Clients expect you to understand their requirements and to know the content of their guidance documents.

Data validation is ideally performed and often required for confirming remedial action is complete, for monitoring and operations assessments, and for determining that materials are suitable to be put into or back into the ground (ex: using clean site soils as backfill). Data validation may also be needed for site characterization, depending upon purpose of characterization. Data validation provides assurance that data are adequate for the intended use. Data that are adequate for the intended use lead to sound project decisions. Data validation may also save you a day in court.

Scenario 2:

The new owner of the property in Scenario 1 plans to sue the previous owner, your client. You are called upon to defend your assertion that you completed remediation to the satisfaction of the regulatory requirements of the time; however, ten years have passed since you completed this project and you don’t recall the details of this small project all that well. You are concerned when your data are called into question. However, because your validators clearly and thoroughly documented the calibration issue, raised the reporting limits, and showed your soil samples were clean to 20 mg/kg, the case is dismissed.

Data validation is, however, not always needed. It is rarely needed for waste characterization, and data indicating additional actions are needed (such as excavating wider or deeper) do not require validation. In these cases, responsibility is being assumed by another party (i.e. the waste acceptance facility or landfill) or your team will be taking additional actions before you make the final project decisions. In some cases, the level of validation (such as those commonly referred to as Levels 2, 3, and 4) may be minimized unless issues arise, depending on project objectives. Data validation performed in a manner that is tailored to your project helps ensure project objectives are met and risk is minimized.

If you have questions or comments, please leave them in the comments section below. If you’d like to find out if Oak Services is the right company to write or review your project plan, perform your environmental data validation or assess your validation needs, please contact us and let us know what you’re looking for.

 References

Notes:

*The parameters evaluated with MPC were historically referred to as “PARCC”, which is an acronym for precision, accuracy, representativeness, comparability, and completeness. PARCC is generally considered to be an obsolete term now, and MPC includes an evaluation of data precision, accuracy, bias, sensitivity, and completeness.

** Although it is possible to tailor your MPC very specifically to your project, it is not possible to anticipate every possible field and laboratory condition that may be encountered during project execution. It is reasonable to use default MPC with room for professional judgement. This approach can be formalized in your QAPP, along with a requirement that professional judgment calls will be briefly explained in your data validation summaries or reports.

About the author: Dianne McNeill is a Proposal Manager and Senior Scientist with Oak Services. She has 23 years of experience in the environmental sciences, with 15 years environmental data validation experience inclusive of 10 years experience training new validators. She also has 7 years of environmental laboratory experience, with a focus on GC/MS analysis of VOCs and SVOCs and LC/MS and LC/MS/MS analysis of explosives, dyes, and specialty parameters.